A Stereo Visual Odometry Framework with Augmented Perception for Dynamic Urban Environments

Marcelo Contreras¹, Neel. P Bhatt², and Ehsan Hashemi²

Problem statement

❏ In urban canyons, there is a significant presence of dynamic instances (vehicles and pedestrians) that generate untrackable landmarks for ego-motion estimation solutions.

Related works

^{୍ଚ}ିଁ node LAB

[1] Y. Liu and J. Miura, "Rds-slam: Real-time dynamic slam using semantic segmentation methods," IEEE Access, vol. 9, pp. 23 772– 23 785, 2021. [2] Bescos, B., Campos, C., Tardós, J. D., & Neira, J. (2021). DynaSLAM II: Tightly-Coupled Multi-Object Tracking and SLAM. IEEE robotics and automation letters, 6(3), 5191-5198. https://doi.org/10.1109/lra.2021.3068640

We propose **dynamic stereo VO** system that integrates the following characteristics:

- Compute a **union-static mask** from a **priori static street instances** by merging instance segmentation and object detection.
	- Both features and landmarks are only associated to the **static background**.
- An **efficient bundle adjustment** over **semantic-aware feature tracking** for pose refinement over a moving horizon and a sparse set of static covisible landmarks.

Dynamic SVO system overview

We design the system that:

Dynamic SVO system overview

1) Computes an union static mask from merged semantics of YOLACT and YOLOv5. The feature detection filters outliers outside the static mask, and inliers are tracked to current frame.

SVO algorithm overview

2) Block matches left and right frame to get disparity map and compute right features.

SVO algorithm overview

2) Block matches left and right frame to get disparity map and right features without detection. Then, landmarks are triangulated to form a local point cloud.

SVO algorithm overview

4) Current pose C and landmarks in global frame are append to a moving window that consider N last frames.

4) Current pose C and landmarks in global frame are append to a moving window that consider N last frames. Covisibility checking ensures node connections.

❏ In urban canyons, we have certainty that there are static objects which cannot be moveable, thus avoiding movement discrimination in dynamic instance filtering.

RGB-D image Light poles **U** *traffic lights* **U** *traffic signs (*from YOLACT[3]*)*

[3] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, "YOLACT: real-time instance segmentation," CoRR, vol. abs/1904.02689, 2019.

RGB-D image Light poles **U** *traffic lights* **U** *traffic signs* **U** *tree trunk* (from YOLOv5[4])

[4] J. Solawetz, "What is YOLOv5? A Guide for Beginners." 1 2023.

RGB-D image Light poles **U** *traffic lights* **U** *traffic signs* **U** *tree trunk* **U** *buildings* (from YOLACT[3])

❏ A 30% upper image (tunnable depending on scene content) has been added to the mask to increase robustness against false positives in segmentation and detection.

RGB-D image Light poles **U** *traffic lights* **U** *traffic signs* **U** *tree trunk* **U** *buildings* **U** *30%upper image*

Took inspiration of ORB-SLAM [5] and Strasdat.et al [6] to adapt a covisibility graph to connect consecutive frames, map points and feature measurements.

Took inspiration of ORB-SLAM [5] and Strasdat.et al [6] to adapt a covisibility graph to connect consecutive frames, map points and feature measurements.

[5] R. Mur-Artal, J. M. M. Montiel, and J. D. Tard ́os, "ORB-SLAM: a versatile and accurate monocular SLAM system," CoRR, vol. abs/1502.00956, 2015. [6] H. Strasdat, A. J. Davison, J. Montiel, and K. Konolige, "Double window optimisation for constant time visual slam," in 2011 IEEE ICCV, 2011, pp. 2352–2359.

The static information is embedded in the graph

Algorithm 2: Covisibility check for one frame : reference frame wC_k , graph C **Initial Parameters:** image dimensions (h, w) $X_k =^w C_k X_k;$ for frame *i* in $F \leftarrow C$ do if ${}^wC_j == {}^wC_k$ then $\begin{array}{c}\n\big| \quad \text{pass;}\\ \n\hat{x}_j^l = \pi(\boldsymbol{X}_k, \boldsymbol{P}^l, ({}^w\boldsymbol{C}_j)^{-1}); \n\end{array}$

Algorithm 2: Covisibility check for one frame : reference frame wC_k , graph C **Initial Parameters:** image dimensions (h, w) $X_k =^w C_k X_k;$ for frame j in $F \leftarrow C$ do if ${}^wC_i == {}^wC_k$ then pass; $\hat{x}_{j}^{l} = \pi(X_{k}, P^{l}, ({}^{w}C_{j})^{-1});$ for *point i* in \hat{x}_j^l do if $\hat{x}_{(j,i)}^l \notin [h, w]$ then

Reject $x_{k,i}^l, X_{k,i}$ in next steps; end

Algorithm 2: Covisibility check for one frame **Initial** : reference frame wC_k , graph C **Parameters:** image dimensions (h, w) $X_k =^w C_k X_k;$ for frame *i* in $F \leftarrow C$ do if ${}^wC_i == {}^wC_k$ then pass; $\hat{x}_{j}^{l} = \pi(X_{k}, P^{l}, ({}^{w}C_{j})^{-1});$ **for** point i in \hat{x}_j^l do if $\hat{x}_{(j,i)}^l \notin [h, w]$ then Reject $x_{k,i}^l$, $X_{k,i}$ in next steps; end $\mathcal{M} \leftarrow \mathcal{FM}(d_k^l \leftarrow x_k^l, d_i^l \leftarrow x_i^l);$ for (m', m) in matches M do Add observation $({}^wC_j, x^l_{(j,m)})$ in $X_{(k,m')}$; end end

Local bundle adjustment graph

extended to cover all the window poses and associated landmarks …

> **The graphs contains only static information.**

Evaluation platform

NODE Lab test car Map view of test sequences

Trajectory results & comparison with SOTA

The method handles scenarios under presence of dynamic objects (pedestrians and moving cars).

TABLE I: Comparison of different algorithms in dynamic sequences from NODE Lab dataset

*Best results are shown in **bold**

Processing time comparison

The sparse set of static features reduces computational load in stages of stereo matching, triangulation and pose estimation in comparison to use the non-static set.

Issues and future works

Temporal instability on instance segmentation or object detection due to **occlusion**, **fast movement** or **incapability to process far objects** injects noise in estimation.

- A semantic-aware stereo visual odometry has been presented which identifies street objects to include them in static ROI for reliable feature extraction.
- Static features, landmarks and poses were wrapped inside a local bundle adjustment optimization. The refinement BA is benefited by using a reduced set of keypoints for faster and more accurate results.
- The effectiveness of the method has been demonstrated through extended evaluation on urban canyons (University of Alberta) against other methods.

Funding Agencies and Acknowledgements

Thank You!

NODE Lab

e-mail: marceloj@ualberta.ca, npbhatt@uwaterloo.ca and ehashemi@ualberta.ca

