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Motivation

• SLAM is essential for position tracking and scene reconstruction

• Photorealistic reconstruction in real-time is a desired feature for many 
applications

• How do we enable real-time photorealistic SLAM?

Our Contributions:

• We show for the first time that a SLAM framework utilizing a 3D Gaussian 
map and integrating inertial measurements and depth with unposed RGB 
images enables (1) superior rendering quality, (2) superior tracking, and (3)
scale awareness.

• We release a multi-modal dataset consisting of various scenes collected 
using a mobile robot equipped with these sensing modalities
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Overview of the MM3DGS SLAM Framework
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MM3DGS Framework

IMU@100Hz

Camera@30Hz

Pre-integration

Depth

Pose Optimization

ℒ𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝟙𝑂 𝐺,𝑇𝐶 (ℒ𝐶 + 𝜆𝐷ℒ𝑑𝑒𝑝𝑡ℎ)

MappingGaussian Initialization

Add new Gaussian per pixel of 

keyframe if:

1. Opacity < 0.5

2. Depth error > 50x median 

depth error

Keyframe Selection

Classify as keyframe if:

1. Covisibility < 95%

2. Min NIQE in sliding window
ℒ𝑚𝑎𝑝𝑝𝑖𝑛𝑔 = 𝜆𝐶ℒ𝑝ℎ𝑜𝑡𝑜 + 𝜆𝑆ℒ𝑆𝑆𝐼𝑀 + 𝜆𝐷ℒ𝑑𝑒𝑝𝑡ℎ

Mobile Robot



A Scene From Our UT-MM Dataset (RGB-D+LiDAR+IMU+GT)
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Qualitative Results – Rendering

• We present our results on 4 

scenes from our dataset:

– Square: Robot moves along a 

trajectory outlining a square loop

– Ego-centric: Robot moves around 

objects of interest while keeping them 

in the center of the view

– Ego-drive: Robot moves around 

objects of interest without keeping 

them in the center of the view

– Straight: Robot moves roughly along 

a straight path
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Tracking+Rendering Performance on UT-MM (Square-1)
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Depth (Ours)

RGB (Ours)

Depth (GT)

RGB (GT)

Online map generation

➢ Our framework integrates RGB-D+IMU with keyframing 
along with a depth loss based on the Pearson correlation 
coefficient and can render at 90fps

➢ We achieve 3x better tracking and 5% increase in 
rendering quality compared to the state-of-the-art baseline 
(SplaTAM)



Tracking+Rendering Performance on UT-MM (Ego-centric-1)

Depth (Ours)

RGB (Ours)

Rendered map (post generation)



Qualitative Results – Tracking

• Depth measurements help correct drift in 

the vertical direction (z)

• IMU measurements help correct drift in the 

longitudinal and lateral directions (x and y)

• IMU and depth measurements together 

help address drift related errors in all 

directions
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Quantitative Results

• SplaTAM uses RGB-D data (does not integrate IMU) without keyframing 

and an L1 loss for depth

• Our framework integrates RGB-D+IMU with keyframing and depth loss is 

based on the Pearson correlation coefficient

• We achieve 3x better tracking and 5% increase in rendering quality
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Conclusion

Our Contributions:

• We develop MM3DGS: the first SLAM framework utilizing a 3D Gaussian 

map and integrating inertial measurements and depth with unposed RGB 

images

• We achieve 3x superior tracking and 5% increase in rendering quality along 

with enhanced scale awareness

• We release a multi-modal dataset collected using a mobile robot equipped 

with these sensing modalities where we showcase these results
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Thank you!
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