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ChatGPT for Robotics: Pre-trained language models
Design Principles and Model Abilities enCOde ”C h WOI’| d kn OWI ed g e

Sai Vemprala', Rogerio Bonatti’, Arthur Bucker , and Ashish Kapoor

and P rovide a new interface

This paper presents an experimental study regarding the use of OpenAl's ChatGPT [1] for

robotics applications. We outline a strategy that combines design principles for prompt .

engineering and the creation of a high-level function library which allows ChatGPT to adapt etwe e n u I I I an S an I I l aC I n e S .
to different robotics tasks, simulators, and form factors. We focus our evaluations on the

effectiveness of different prompt engineering techniques and dialog strategies towards the

execution of various types of robotics tasks. We explore ChatGPT’s ability to use free-form

dialog, parse XML tags, and to synthesize code, in addition to the use of task-specific prompting

functions and closed-loop reasoning through dialogues. Our study encompasses a range of

tasks within the robotics domain, from basic logical, geometrical, and mathematical reasoning

all the way to complex domains such as aerial navigation, manipulation, and embodied agents.
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How can we incorporate language models to generate reliable high-level
plans or control policies for autonomous systems?
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How can we ...

Leverage additional sources
of task-relevant knowledge?
Externally

provided side
information

Observations rj:f-
Language model I |
Natural

@ language Instructions é Actions @
- a

Agent

Close the decision-making loop?

Human user I Refinements to

input prompt

Automatically refine the Verify that the generated behavior
generated behaviors? will satisfy critical requirements?

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)



Fine-Tuning Language Models Using Human Feedback

Example: OpenAl Scheme for Instruct GPT

Step1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

I
\/

(e}

V4

Some people went
to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

(.

Explain the moon

landing to a é year old

0 o

Explain gravity. Explain war

[C] o

Moon is natural People went to
satellite of . the moon...

Q

0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

»

Write a story
about frogs



Fine-Tuning Language Models Using Human Feedback
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Fine-Tuning Language Models Using Fermal Feedback?

Methoes
e ™\ Trained LM e A
(Production) Model
Text data generated Reward
—> ’ text data - !
6 @
N ./ ./

Formal Methods:
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Background: Automaton-based Representations

Outputs

Transitions

States \
(p, a)
Start

Why automaton-based representations? They are used for

* model checking, planning,...

* reactive synthesis, games on graphs, ...

* probabilistic verification and synthesis, and
* reinforcement learning.

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)



A (Very) Brief Introduction to Model Checking

Are the controller's outcomes guaranteed to satisfy user-specified
requirements when implemented against a system model?
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A (Very) Brief Introduction to Model Checking

Are the controller's outcomes guaranteed to satisfy user-specified
requirements when implemented against a system model?

Model,
environment assumptions,
other side information Controller System requirements

‘M R C hg”

Allowable
Individual sequences of
system trace logical formulas

Logic-based
system description

All possible system
executions

MRPCED < forevery :

T

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)




A (Very) Brief Introduction to Model Checking

Are the controller's outcomes guaranteed to satisfy user-specified
requirements when implemented against a system model?

Model,
environment assumptions,
other side information Controller System requirements
‘M QC E P’

|

Binary outcome

v \4

Byproduct: Counterexample trace g
that violates the specification.

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 10



How to Connect Generative Models to Automata?
(GLM2FSA: Generative Language Model to Finite-State Automaton)

Input : “Cross the road”

Query GLM for steps and substeps

'| Steps for: Cross the road

| [1] Look both ways before crossing the road.

[2] If there are no cars coming, proceed to cross the road.

[3] If there are cars coming, wait for them to pass before crossing the road.

6| Substeps for: [1] Look both ways before crossing the road.
[1.1] Face the direction you want to cross the road in.
[1.2] Look to the left.

[1.3] Look to the right.

| [1.4] If there are no cars coming, proceed to [2]. If there are cars coming, proceed to [3].

Parse sentences, extract keywords
‘ query
[1] <look way> <before> <cross road>

[2] <if> <no car come> <proceed cross road>
[3] <if> <car come> <wait> <pass> <before> <cross road> response
[1.1] <face direction want cross road>
[1.2] <look left>

[1.3] <look right>

[1.4] <if> <no car come> <proceed> <if> <car come> <proceed> (True, (True, (True,

\face direction™ “look left™) “look right” )
start =>»{ d11 >{ d12 >( d13

(car come, €)

Build finite state automata from substeps

(23 )€ 22 € (car come, €)
(True, (True,
“look way™) “cross road”™ )
p— - car come, € (Tme G,
Q= {qﬂ’ Q120 Q130 G140 2 - ( -
P ={car come, pass, v} _ Visualize @ ‘@_)9
A = {face direction, look left, look right, ...} .
Tue, €) (— pass, €)
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Verifying Whether the Generated Behaviors
Satisfy User-Specified Reqguirements

MQPCED

M Additional available Controller constructed

- look left A— look right

information, e.g., a model using GLM2FSA CI) Specification

(car come N\ car pass, c) (True, c)
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look ﬁgh['

= look lelt
(car come N\ car pass, c) (True, c)

® start =={ 1 e wﬂy“): (% (— car come \ car pass, > & h L tr aff]c ]Ig b t - 0 g 03]

(IFTLE
“cross road™) x

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)

“cross road™)
J “If not at a traffic light, eventually complete
the task as specified by the model”
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Fine-Tuning Language Models Using Formal Methods Feedback

Abstract Model High-Fidelity Simulator

User

Specifications Control Tasks

Autonomous System Models l
A
( Response 1 > Response 2 ) O E
Automated Feedback Prompt Dataset
Feed
To Select
DPO A
v Response 1 Response 2 Prompt
v
Fine-Tune the Query the A
Language Model» - Lfnguage Model
Direct Preference Optimization Language Model Prompt

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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Fine-Tuning Language Models Using Formal Methods Feedback

Modeling the Autonomous System

(@ [/ .
a\ﬁl Controller Construction
Wy

Response 1 Response 2
Autonomous System

| | |

(= TL is green, €)

( left car V right ped, €)

(True, check left car

A check right ped)
Q1 >
e
4

F turn_right
G — stop

(1L 2A198q0
1)

Controller & Controller 6, A Set of Specifications
Autonomous System Model ./ (®,...,D }
l | | |
|
Compare the # of
Satisfied Specifications ( Response1 >  Response 2 )
MQQ EC E D >
P05 95 LI K
Model Checker Formal Verification

15



Fine-Tuning Language Models Using Formal Methods Feedback

Modeling the Autonomous System

aiﬁi

Autonomous System

Autonomous System Model .
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Formal Methods Feedback in an Autonomous Driving System

Modeling the Autonomous System

Transitions Labels

States \ /
\ labelof p; s g€ P

labelof pp : p e P

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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Formal Methods Feedback in an Autonomous Driving System

Modeling the Autonomous System

Qm = {Po p1}
Ay (po) = greenlight

Ay(p1) = = greenlight
du(Po,p1) =1
du(P1,Po) = 1

P = {greenlight}
S ~ Traffic Light

— green light

m) 0 _©

green light

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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Formal Methods Feedback in an Autonomous Driving System

Modeling the Autonomous System

< > P
-.g;menTLAcarfmmleﬁ !

— green LL A (opp car v ped at left)

{1121 1 pad A 1ea ddo) v 7T U221F

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)



Fine-Tuning Language Models Using Formal Methods Feedback

Controller Construction

Response 1 Response 2

| |

( left car V right ped, €)

(True, check left car

A check right ped)
Q1 >
=
-

(1L 2A198q0
1)

start =>»

Controller €, Controller €,
Autonomous System Model .

20



Formal Methods Feedback in an Autonomous Driving System

Controller Construction

Steps for turning right at

the traffic light

User

Language Model

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)

1. Look straight ahead and watch for traffic light.
2. If the traffic light turns green, start moving forward.
3. As you approach the intersection, look to your left for

oncoming traffic.

4. If there is no traffic coming from your left, check
pedestrians on your right.

5. If it Is safe, turn your vehicle right.

1. Observe the traffic light in front of you.

2. Check for the left approaching car and right side pedestrian.
3. If no car from the left is approaching and no pedestrian on the
right, proceed to turn right.

21



Formal Methods Feedback in an Autonomous Driving System

Controller Construction

1. Look straight ahead and watch for traffic light.
2. If the traffic light turns green, start moving forward.

3. As you approach the intersection, look to your left for oncoming traffic.
4. If there is no traffic coming from your left, check pedestrians on your right.
5. If it is safe, turn your vehicle right.

1.
2.
3.
4,

<observe traffic light>.

<i1f> <green traffic light>, <go straight>.

<observe car from left>.

<i1f> <no car from left>, <check pedestrian
at right>.

<if> <no pedestrian at right>, <turn
right>.

Parse the sentence
Align the vocabulary to P and A

o)

(— TL is green, €) (car from left, €)

One state per step
Transition input: condition
Transition output: action

(&)
(y3u um ‘

‘WySuje pad — )

%J (ped at right,
44 o

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 22



Formal Methods Feedback in an Autonomous Driving System

Controller Construction

1. Look straight ahead and watch for traffic light.
2. If the traffic light turns green, start moving forward.
3. As you approach the intersection, look to your left for

oncoming traffic.

4. If there is no traffic coming from your left, check
pedestrians on your right.

5. If it is safe, turn your vehicle right.

( left car V ped at right, €)
(True, check left car

A check ped at right)
@ ’ 1. Observe the traffic light in front of you.
A 2. Check for the left approaching car and right side
pedestrian.

(1L 2A13sQO
aniy)

3. If no car from the left is approaching and no
pedestrian on the right, proceed to turn right.

start =>»( 40

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 23



Fine-Tuning Language Models Using Formal Methods Feedback

( left car V right ped, €)

(True, check left car

A check right ped)
Q1 >
e
-

F turn_right
G — stop

(1L 2A198q0
‘anap)

Controller €, Controller €, A Set of Specifications
Autonomous System Model ./ (®,...,D }
l | | |
|
MR EC F D
Model Checker Formal Verification
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Formal Methods Feedback in an Autonomous Driving System

Formal Verification

(— TL is green, €) (car from Jeft, €)

7z

(3ySu wm
‘S je pad )

[1(—green traffic light — —go straight),

[I(stop sign — ¢ stop),
[1—turn right V —(car from left V pedestrian at right),x
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Formal Methods Feedback in an Autonomous Driving System

Formal Verification

( left car V ped at right, €)

(True, check left car

A check ped at right)
® | k

("L 2A198QO
aniy)

start =>( 40 N

&
R

[1(—green traffic light — —go straight),
[I(stop sign — ¢ stop),

[1—turn right V —(car from left V pedestrian at right),
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Fine-Tuning Language Models Using Formal Methods Feedback

Compare the # of
Satisfied Specifications ( Response1 < Response 2 )

¢1’¢2’ % (DDCPZ’ ([)5
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Fine-Tuning Language Models Using Formal Methods Feedback

Abstract Model High-Fidelity Simulator

User
Specifications | Control Tasks
Autonomous System Models l l
A
( Response 1 < Response 2 )< O E
Automated Feedback Prompt Dataset
Feed T T
To Select
DPO A
v Response 1 Response 2 Prompt
v
Fine-Tune the @ Query the A
Language Model» N La;mguage Model

Direct Preference Optimization Language Model Prompt

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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Fine-Tuning Language Models Using Formal Methods Feedback

High-Fidelity Simulator

User
Specifications | Control Tasks
Autonomous System Models l l
N
Response 1 < Response 2 )< O E
Automated Feedback Prompt Dataset
Feed T T
To Select
DPO A
| Response 1 Response 2 Prompt
v
Fine-Tune the Query the A

Direct Preference Optimization Language Model Prompt

Language Model Language Model
> <

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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Fine-Tuning Language Models Using Formal Methods Feedback

Empirical Evaluation via Simulation

Information from the Simulator

Response 1 Response 2

| |

( left car V right ped, €)

(True, check left car

. A check right ped)
Yo,

‘an1y)

("LL 2A195q0

Execution Trace

Controller €, Controller €, (left_car A go_straight, pedestrian
A stop, —pedestrian A go_straighy

> Execution Traces

Empirically Collect
Execution Info

> Execution Traces

High-Fidelity Simulator
30



Fine-Tuning Language Models Using Formal Methods Feedback

Empirical Evaluation via Simulation

( Response1 < Response 2 )

P[satisfy all specs]

»  Execution Traces > W F turn_right > 60%
Empirically Collect , G — stop
Execution Info Verify Traces
> Execution Traces > » 90%
A Set of Specifications

{D,...,D,}
31



Quantitative Analysis

Empirical Evaluation via Simulation

Carla Simulator: Extract execution traces.

Carla Simulation Video Object and Position Information

et

3 4 ¥ -GN ALE ector3D(x=7.464157, y=
s B : - ITany . ector3D(x=7.464157, 2
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l g N s s ’ ector3p(x=7.699051, y=-
' | : . T T3 , |Vector3p(x=-12.249878, }

.
e ".

ector3D(x=-12.
tor3D(x=-12
ector3D(x=-7.4

ector3D(x=2.80
[ tor3D(x=-7.6¢

ctor3D(x=7.5
ector3D(x=7.51

471230,

.468399,

35089, y=-44
2956, 17.326714,
2642, y=-21.904179

2.961929,
.961929,

2.900478)

150)

or TS
or TS

|Vector3D(x=7.681984, y=-42.958878,
|Vector3D(x=7.753578, y=-42.9C

tor3D(x=-12.210609,

Vector3D(x=-12.270897, s

ector3D(x=-12.195351, y= .298569,

IVector3D(x=-12.416702, y=-8.282814,

tor3D(x=-12.413872,

tor3D(x=-7.385361,

tor3p(x=2.859573, 17.434631,
ector3D(x=-7.644753 20.938622,

Execution Trace: (desired objects with positions, action),......

806824 ) : or TS

1.986122) : or TS

=2.822465) C : TL or TS
=1.984991) Cl: * FL.OF “ES
=2.482875) Class: TL or TS
3.197015) Cla . i r TS
1.387048) Class: TL or TS
6914) Vehicle, ID: 91

587) Vehicle, ID: 89

ID:
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Quantitative Analysis

Formal Verification

The percentage of the LLM outputs
with preferred response rather than

How strong the LLM intends to output

Training Loss the preferred response (y,,) rather than

Training Performance

the unpreferred response.

1. Training loss converges after 100 epochs.

2. Nearly 100% preference accuracy.

the unpreferred response (y;).

1 20 1
8 0on TFEIETENCE TOT 14y
05l ] E Strong pref for y
g B
5 § 10
1k n E Dﬁ B h N 5}
3
ol | 0.4 | ] E 0l M Indifference to y., and y; |
| | | |
0 100 200 0 100 200 0 100 200
Descent Step Descent Step Descent Step

3. Thefine-tuned language model strongly prefers the “correct” responses.

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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Quantitative Analysis

Empirical Evaluation via Simulation

Formal Verification Empirical Evaluation

[
b

é —T H ! # before fine-tuning
E E 1 - ! Nafter fine-tuning
= =
3 A g
A g
B 2
= e 0.6 -
" &
3 -
% % 0.4 -
5 =
]
E B B train E 0.2 4
Z. U B validation
I I I | I 1 I I I I I 0 -
0 20 40 60 80 100 120 140 160 180 200 @y P, P, Dy D5
Epoch Specification

The results indicate that our approach can improve the language model’s ability to satisfy
critical requirements.

Our approach can act as a starting point to guide the design process for real-world
Implementations of autonomous driving systems (60% — 90%).

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)




A Step Toward Real-World Grounding

Empirical Evaluation via Simulation = Real-World Performance

(left car V ped at right, €)

(True, check left car

Statements

1. The controller’s decisions are solely based on visual A
observations collected from the environment.

(1L 2A13sq0
aniy)

2. The vision model performs consistently in simulation
and reality. start =>( 40

Rain Night Sunny Cloudy

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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A Step Toward Real-World Grounding

Empirical Evaluation via Simulation = Real-World Performance

Statements

1. The controller’s decisions are solely based on visual

observations collected from the environment.

2. The vision model performs consistently in simulation

and reality.
Car Pedestrian
19 Real 19 Real
Simulation Simulation
0.8 Smoothed Estimation L& Smoothed Estimation

(left car V ped at right, €)

(True, check left car

>

(1L 2A13sq0
‘oni)

start =>( 40
Traffic Light Owerall
1 1
Real —— Real
Simulation Simulation
0.8 = Smoothed Estimation (.8 Smoothed Estimation
0.6 -
0.4 =
0.2 4

0.1

T
0.2 0.3 0.4
confidence

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)



Extension: A Step Toward Real-World Grounding

Empirical Evaluation via Simulation = Real-World Performance

Statements

1. The controller’s decisions are solely based on visual

observations collected from the environment.

2. The vision model performs consistently in simulation
and reality.

>

(1L 2A13sq0

(True, check left car

(left car V ped at right, €)

start =>»( 40

‘oniy)

3. If Statement 2 holds and if the controllers satisfy the critical specifications in simulation, then
the controllers also satisfy the specifications in reality.

Car Pedestrian
17 Real 17— Real
Simulation Simulation
0.8 Smoothed Estimation L& Smoothed Estimation

U8 T | S | A 0.1 0.2 03 04

confidence

0.5

Traffic Light

0.8 -

0.6 -

0.4 -

0.2 —

Real
Simulation
Smoothed Estimation

0.1

Owerall

(.8

—— Real
Simulation

Smoothed Estimation

T
0.1 0.2 03 04

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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Extension: A Step Toward Real-World Grounding

class AutonomousVehicle():
e f (self):
.pedestrian =

.Car = ( left car V ped at right, €)

def {vehicle):
vehicle. {} # observe the environment first
if wvehicle. (): # Step 1
vehicle. (} # stop if pedestrian is observed
return “"Stop
elif wehicle. (}): # Step 2

(self):

# vehicle starts moving forward

vehicle. ()} # stop if car is observed
return “"Stop
else: # Step 3
vehicle. ()
return "Move_forward

(self):

# vehicle turns left

{self):

# vehicle turns right

[J(—green traffic light — —go straight),
[J(stop sign — ¢ stop),
[ —turn right V —(car from left V pedestrian at right),



Experimental Evaluation

Task:
Turn right at the stop sign

oje Movavi




Fine-Tuning Language Models Using Formal Methods Feedback

Abstract Model High-Fidelity Simulator

User
Specifications | Control Tasks
Autonomous System Models l l
A
( Response 1 > Response 2 )< O E
Automated Feedback Prompt Dataset
Feed ‘[ T
To Select
DPO A
v Response 1 Response 2 Prompt
v
Fine-Tune the Query the A
Language Model> - La;mguage Model

Direct Preference Optimization Language Model Prompt

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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Thank you!

Paper

Paper available at: https://arxiv.org/abs/2310.18239

TEXAS |1, autTonomy

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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