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Pre-Trained Language Models for Autonomous Systems

How can we incorporate language models to generate reliable high-level 

plans or control policies for autonomous systems?

Natural 

language Instructions

Human user

Actions

AgentLanguage model

Pre-trained language models 

encode rich world knowledge 

and provide a new interface 

between humans and machines.
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Natural 

language Instructions

Human user

Externally 

provided side 

information

Refinements to 

input prompt

Observations

How can we …

Leverage additional sources 

of task-relevant knowledge?

Verify that the generated behavior 

will satisfy critical requirements?

Automatically refine the 

generated behaviors?

Actions

Close the decision-making loop?

Agent

Language model

Generative pre-trained models for autonomous systems

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)



Fine-Tuning Language Models Using Human Feedback

Example: OpenAI Scheme for Instruct GPT

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 4



Fine-Tuning Language Models Using Human Feedback

Subjective/Inconsistent Feedback

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 5



Fine-Tuning Language Models Using _____ Feedback?

Subjective/Inconsistent Feedback

Formal 

Methods

Formal Methods: 

Automaton-based Representation, Model Checking, Temporal Logic Specification, etc.

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 6



Background: Automaton-based Representations

Start

𝑞1

Inputs

States

Outputs

Transitions

• model checking, planning,…

• reactive synthesis, games on graphs, …

• probabilistic verification and synthesis, and

• reinforcement learning.

Why automaton-based representations? They are used for

𝑞2

𝑞3

𝑞4

(𝑝, 𝛼)

(𝑇𝑟𝑢𝑒, 𝜖)

(𝑇𝑟𝑢𝑒, 𝜖)
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A (Very) Brief Introduction to Model Checking

“ℳ⊗𝒞 ⊧ Φ”
system requirementscontroller

Model, 

environment assumptions,

other side information

Are the controller’s outcomes guaranteed to satisfy user-specified 

requirements when implemented against a system model?

traffic 
light 1

traffic 
light 2

⊗
⊗ ⊧

□ ◊ 𝑔1 ∧ □ ◊ 𝑔2 

          ∧ □ ¬𝑔1 ∨ ¬𝑔2

traffic 
light 2

traffic 
light 1

“Each light will always 

eventually be green, and 

the lights will never 

simultaneously be green.”

1

2

0¬𝑔2 ∨ ¬𝑔1  

¬𝑔2 ∨ ¬𝑔1  

¬𝑔2 ∧ 𝑔1  

¬𝑔1 ∧ 𝑔2  
¬𝑔1 ∨ ¬𝑔2  

𝑔1 ∧ ¬𝑔2  
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A (Very) Brief Introduction to Model Checking

Are the controller’s outcomes guaranteed to satisfy user-specified 

requirements when implemented against a system model?

“ℳ⊗𝒞 ⊧ Φ”
System requirementsController

Model, 

environment assumptions,

other side information

Start

Time

Start

All possible system 

executions

Individual 

system trace

Allowable 

sequences of 

logical formulas

Logic-based

system description

for every system trace,ℳ⊗𝒞 ⊧ Φ

Start

∈

⇔
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Binary outcome

Byproduct: Counterexample trace

that violates the specification.
Start

A (Very) Brief Introduction to Model Checking

Are the controller’s outcomes guaranteed to satisfy user-specified 

requirements when implemented against a system model?

“ℳ⊗𝒞 ⊧ Φ”
System requirementsController

Model, 

environment assumptions,

other side information

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 10



How to Connect Generative Models to Automata?
(GLM2FSA: Generative Language Model to Finite-State Automaton)

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 12



Verifying Whether the Generated Behaviors 

Satisfy User-Specified Requirements

ℳ⊗𝒞 ⊧ Φ

¬traffic light →◊ goal

“If not at a traffic light, eventually complete 

the task as specified by the model” 

Controller constructed 

using GLM2FSA𝒞Additional available 

information, e.g., a model ℳ

⊗ ⊧

SpecificationΦ

¬traffic light →◊ goal⊗ ⊧

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 13



Fine-Tuning Language Models Using Formal Methods Feedback
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Fine-Tuning Language Models Using Formal Methods Feedback

Modeling the Autonomous System

Controller Construction

Formal Verification
Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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Fine-Tuning Language Models Using Formal Methods Feedback

Modeling the Autonomous System

Controller Construction

Formal Verification
Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)



Formal Methods Feedback in an Autonomous Driving System

Modeling the Autonomous System

States

LabelsTransitions

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 17



Formal Methods Feedback in an Autonomous Driving System

Modeling the Autonomous System

𝑄𝑀 = {𝑝0 𝑝1}
𝜆𝑀 𝑝0 = 𝑔𝑟𝑒𝑒𝑛 𝑙𝑖𝑔ℎ𝑡
𝜆𝑀 𝑝1 = ¬ 𝑔𝑟𝑒𝑒𝑛 𝑙𝑖𝑔ℎ𝑡
𝛿𝑀 𝑝0, 𝑝1 = 1
𝛿𝑀 𝑝1, 𝑝0 = 1

green light

¬ green light

𝑃 = {𝑔𝑟𝑒𝑒𝑛 𝑙𝑖𝑔ℎ𝑡}
S ~ Traffic Light

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 18



Formal Methods Feedback in an Autonomous Driving System

Modeling the Autonomous System

A set of propositions P = {green traffic light, stop sign, car from left, pedestrian at right, etc.}

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 19
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Fine-Tuning Language Models Using Formal Methods Feedback

Modeling the Autonomous System

Controller Construction

Formal Verification
Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)



Formal Methods Feedback in an Autonomous Driving System

Controller Construction

Steps for turning right at 

the traffic light

1. Look straight ahead and watch for traffic light.

2. If the traffic light turns green, start moving forward.

3. As you approach the intersection, look to your left for 

oncoming traffic.

4. If there is no traffic coming from your left, check 

pedestrians on your right.

5. If it is safe, turn your vehicle right.

1. Observe the traffic light in front of you.

2. Check for the left approaching car and right side pedestrian.

3. If no car from the left is approaching and no pedestrian on the 

right, proceed to turn right.

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 21



Formal Methods Feedback in an Autonomous Driving System

Controller Construction

1. Look straight ahead and watch for traffic light.

2. If the traffic light turns green, start moving forward.

3. As you approach the intersection, look to your left for oncoming traffic.

4. If there is no traffic coming from your left, check pedestrians on your right.

5. If it is safe, turn your vehicle right.

Parse the sentence

Align the vocabulary to P and A

One state per step

Transition input: condition

Transition output: action

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 22



Formal Methods Feedback in an Autonomous Driving System

Controller Construction

1. Observe the traffic light in front of you.

2. Check for the left approaching car and right side 

pedestrian.

3. If no car from the left is approaching and no 

pedestrian on the right, proceed to turn right.

1. Look straight ahead and watch for traffic light.

2. If the traffic light turns green, start moving forward.

3. As you approach the intersection, look to your left for 

oncoming traffic.

4. If there is no traffic coming from your left, check 

pedestrians on your right.

5. If it is safe, turn your vehicle right.

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 23
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Fine-Tuning Language Models Using Formal Methods Feedback

Modeling the Autonomous System

Controller Construction

Formal Verification
Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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Formal Methods Feedback in an Autonomous Driving System

Formal Verification

⊗

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)



Formal Methods Feedback in an Autonomous Driving System

Formal Verification

⊗
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Fine-Tuning Language Models Using Formal Methods Feedback

Modeling the Autonomous System

Controller Construction

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)
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Fine-Tuning Language Models Using Formal Methods Feedback

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)



Fine-Tuning Language Models Using Formal Methods Feedback
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Fine-Tuning Language Models Using Formal Methods Feedback

Empirical Evaluation via Simulation

Execution Trace 

(𝑙𝑒𝑓𝑡_𝑐𝑎𝑟 ∧ 𝑔𝑜_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛
∧ 𝑠𝑡𝑜𝑝,¬𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 ∧ 𝑔𝑜_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡)

Information from the Simulator

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)



Fine-Tuning Language Models Using Formal Methods Feedback

Empirical Evaluation via Simulation

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 31



Quantitative Analysis

Empirical Evaluation via Simulation

Execution Trace: (desired objects with positions, action),……

Carla Simulator: Extract execution traces.

Carla Simulation Video Object and Position Information

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 32



Quantitative Analysis

Formal Verification

Training Performance

1. Training loss converges after 100 epochs.

2. Nearly 100% preference accuracy.

3. The fine-tuned language model strongly prefers the “correct” responses. 

The percentage of the LLM outputs 

with preferred response rather than 

the unpreferred response.

How strong the LLM intends to output 

the preferred response (𝑦𝑤) rather than 

the unpreferred response (𝑦𝑙).
Training Loss

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 33



Quantitative Analysis

Empirical Evaluation via Simulation

The results indicate that our approach can improve the language model’s ability to satisfy 

critical requirements. 

Our approach can act as a starting point to guide the design process for real-world 

implementations of autonomous driving systems (60% →   90%).

Formal Verification Empirical Evaluation

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 34



A Step Toward Real-World Grounding

Empirical Evaluation via Simulation →Real-World Performance

Statements

1. The controller’s decisions are solely based on visual 

observations collected from the environment.

2. The vision model performs consistently in simulation 

and reality.

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 35
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A Step Toward Real-World Grounding

Empirical Evaluation via Simulation →Real-World Performance

Statements

1. The controller’s decisions are solely based on visual 

observations collected from the environment.

2. The vision model performs consistently in simulation 

and reality.
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Extension: A Step Toward Real-World Grounding

Empirical Evaluation via Simulation →Real-World Performance

Statements

1. The controller’s decisions are solely based on visual 

observations collected from the environment.

2. The vision model performs consistently in simulation 

and reality.

3. If Statement 2 holds and if the controllers satisfy the critical specifications in simulation, then 

the controllers also satisfy the specifications in reality.

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 37



Extension: A Step Toward Real-World Grounding

⊗

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 38
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Experimental Evaluation

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin) 39



Fine-Tuning Language Models Using Formal Methods Feedback
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Thank you!

Yang, Bhatt, Ingebrand, Ward, Carr, Wang, and Topcu (The University of Texas at Austin)

Paper available at: https://arxiv.org/abs/2310.18239
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