Yunhao Yang*, Neel P. Bhatt*, Tyler Ingebrand*, William Ward, Steven Carr, Zhangyang Wang, and Ufuk Topcu

* Equal Contribution

Paper available at: https://arxiv.org/abs/2310.18239

* Equal Contribution

Pre-Trained Language Models for Autonomous Systems

Pre-trained language models encode **rich world knowledge** and provide a **new interface** between humans and machines.

How can we incorporate language models to generate reliable high-level plans or control policies for autonomous systems?

Generative pre-trained models for autonomous systems

How can we ...

Automatically refine the generated behaviors?

Verify that the generated behavior will satisfy critical requirements?

Fine-Tuning Language Models Using Human Feedback

Example: OpenAl Scheme for Instruct GPT

Fine-Tuning Language Models Using Human Feedback

Formal Methods:

Automaton-based Representation, Model Checking, Temporal Logic Specification, etc.

Background: Automaton-based Representations

Why automaton-based representations? They are used for

- model checking, planning,...
- reactive synthesis, games on graphs, ...
- probabilistic verification and synthesis, and
- reinforcement learning.

A (Very) Brief Introduction to Model Checking

Are the controller's outcomes **guaranteed** to satisfy user-specified requirements when implemented against a system model?

A (Very) Brief Introduction to Model Checking

Are the controller's outcomes **guaranteed** to satisfy user-specified requirements when implemented against a system model?

A (Very) Brief Introduction to Model Checking

Are the controller's outcomes **guaranteed** to satisfy user-specified requirements when implemented against a system model?

How to Connect Generative Models to Automata?

(GLM2FSA: Generative Language Model to Finite-State Automaton)

Modeling the Autonomous System

Controller Construction

right, proceed to turn right.

Controller Construction

Look straight ahead and watch for traffic light.
 If the traffic light turns green, start moving forward.
 As you approach the intersection, look to your left for oncoming traffic.
 If there is no traffic coming from your left, check pedestrians on your right.
 If it is safe, turn your vehicle right.

Parse the sentence Align the vocabulary to *P* and *A*

- 1. <observe traffic light>.
- 2. <if> <green traffic light>, <go straight>.
- 3. <observe car from left>.

 - 5. <if> <no pedestrian at right>, <turn
 right>.

One state per step Transition input: condition Transition output: action

Controller Construction

1. Look straight ahead and watch for traffic light.

2. If the traffic light turns green, start moving forward.

3. As you approach the intersection, look to your left for oncoming traffic.

4. If there is no traffic coming from your left, check pedestrians on your right.

5. If it is safe, turn your vehicle right.

 Observe the traffic light in front of you.
 Check for the left approaching car and right side pedestrian.
 If no car from the left is approaching and no pedestrian on the right, proceed to turn right.

Formal Verification

Formal Verification

Modeling the Autonomous System

Empirical Evaluation via Simulation

High-Fidelity Simulator

Empirical Evaluation via Simulation

Quantitative Analysis

Empirical Evaluation via Simulation

Carla Simulator: Extract execution traces.

Carla Simulation Video

Object and Position Information

Execution Trace: (desired objects with positions, action),.....

Quantitative Analysis

Formal Verification

Training Performance

- 1. Training loss converges after 100 epochs.
- 2. Nearly 100% preference accuracy.
- 3. The fine-tuned language model strongly prefers the "correct" responses.

Quantitative Analysis

Empirical Evaluation via Simulation

Empirical Evaluation

The results indicate that our approach can improve the language model's ability to satisfy critical requirements.

Our approach can act as a starting point to guide the design process for real-world implementations of autonomous driving systems (60% \rightarrow 90%).

A Step Toward Real-World Grounding

Empirical Evaluation via Simulation \rightarrow Real-World Performance

Statements

1. The controller's decisions are solely based on visual observations collected from the environment.

2. The vision model performs consistently in simulation and reality.

A Step Toward Real-World Grounding

Empirical Evaluation via Simulation \rightarrow Real-World Performance

Statements

1. The controller's decisions are solely based on visual observations collected from the environment.

2. The vision model performs consistently in simulation and reality.

Extension: A Step Toward Real-World Grounding

Empirical Evaluation via Simulation \rightarrow Real-World Performance

Statements

1. The controller's decisions are solely based on visual observations collected from the environment.

2. The vision model performs consistently in simulation and reality.

3. If Statement 2 holds and if the controllers satisfy the critical specifications in simulation, then the controllers also satisfy the specifications in reality.

Extension: A Step Toward Real-World Grounding

Experimental Evaluation

Thank you!

Paper available at: https://arxiv.org/abs/2310.18239

