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MM3DGS FRAMEWORK OVERVIEW

Figure 1: Overview of the MM3DGS framework. We receive camera images and inertial measurements from a mobile robot. We utilize depth measurements and IMU
pre-integration for pose optimization using a combined tracking loss. We apply a keyframe selection approach based on image covisibility and the NIQE metric across
a sliding window and initialize new 3D Gaussians for keyframes with low opacity and high depth error [2]. Finally, we optimize parameters of the 3D Gaussians
according to the mapping loss for the selected keyframes.

[2] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely blind” image quality analyzer,” IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209–212, 2013.

MOTIVATION
From AR/VR to autonomous mobile robotics, Simultaneous Localization
and Mapping (SLAM) is an essential enabler and is increasingly being
adopted to create 3D scene reconstructions of the operating environment
without prior localization.

Point cloud SLAM yields exceptional tracking accuracy, but creates
disjoint maps that are visually inferior to newer reconstruction methods.
On the other hand, neural radiance field SLAM outputs photorealistic
maps, but are computationally expensive and are not scalable due to
their implicit nature. 3D Gaussian Splatting (3DGS) addresses these
shortcomings with a map representation capable of photorealistic re-
construction and real-time rendering of scenes using multiple posed
cameras [1].

This work proposes MM3DGS, a multi-modal SLAM framework that
achieves real-time rendering, scale awareness, and improved trajectory
tracking with sensor fusion. In addition, a new multi-modal SLAM
dataset, UT-MM, is collected from a mobile robot and is publicly re-
leased. Experimental evaluation on several scenes from the dataset
shows that MM3DGS achieves 3× improvement in tracking and 5%
improvement in photometric rendering quality compared to the current
3DGS SLAM state-of-the-art, while allowing real-time rendering of a
high-resolution dense 3D map.

[1] Bernhard Kerbl et al. “3d gaussian splatting for real-time radiance field rendering”.
In: ACM Transactions on Graphics (ToG) 42.4 (2023), pp. 1–14.

METHODOLOGY

VISUAL SLAM
MM3DGS represents its map as a set of 3D Gaussians
G. Each Gaussian has position, covariance, color, and
alpha parameters. With an input camera pose TC , a
2D image can be rendered by splatting the Gaussians
on the image plane. Thus, both the Gaussian map and
camera poses can be optimized by comparing the L1

loss between input image I and the render:

Lphoto = L1(I, render(G, Tc))

Since the map is not guaranteed to cover the entire ex-
tent of the current frame, an indicator function is used
to control which pixels are optimized:

1O(G,Tc) =

{
1 if O(G, Tc) > 0.99

0 otherwise

An additional SSIM loss LSSIM aids with mapping.

DEPTH SUPERVISION
Depth measurements can aid SLAM by providing geo-
metric information. The Pearson correlation coefficient
is optimized to provide geometric correlation between
the measured depth D and rendered depth Dr:

Ldepth =
Cov(D,Dr)√
Var(D)Var(Dr)

Further, new Gaussians can be initialized at the sensed
depth to cover unseen areas.

INERTIAL FUSION
Prior to pose optimization, a good initial estimate is
necessary for preventing divergence to bad local min-
ima. IMU measurements can be integrated to ac-
curately propagate the camera pose between frames.
While this open-loop chaining does not account for
IMU biases, we find that errors are small enough to
be optimized away by the visual SLAM.

EFFECTS OF MULTI-MODAL TRACKING
To examine the effects of sensor fusion, the UT-MM Square-1 scene is
tracked with various sensor configurations.
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UT-MM DATASET
To test the MM3DGS framework, a multi-modal dataset dubbed UT
Multi-modal (UT-MM) was collected. The dataset includes eight scenes
with RGB-D images at 30 Hz, inertial measurements at 100 Hz, and
LiDAR point clouds at 10 Hz.

UT-MM addresses the lack of visual-inertial SLAM datasets with high
quality RGB images. We aim for UT-MM to be a benchmark for future
multi-modal photorealistic SLAM frameworks.

Figure 2: Our dataset provides RGB images (top left), depth images (top right),
IMU measurements (bottom left), and LiDAR point clouds (bottom right). The
above examples are taken from the Ego-drive scene.

RESULTS

Method Avg Square-1 Ego-centric-1 Ego-drive Fast-straight

ATE PSNR ATE PSNR ATE PSNR ATE PSNR ATE PSNR

SplaTAM (RGB-D) 12.06 22.03 32.86 18.67 4.40 22.78 4.20 20.61 6.78 26.07
Ours (RGB) 39.14 19.73 59.48 16.54 4.09 23.151 67.20 17.51 25.78 21.71

Ours (RGB+IMU) 33.23 19.58 44.26 17.01 3.41 22.96 68.50 17.12 16.78 21.24
Ours (RGB-D+IMU) 3.98 23.30 7.11 18.59 1.15 24.95 4.54 23.61 3.13 26.05

Table 1: Multi-modal SLAM results on
the UT-MM dataset: ATE RMSE ↓ is in
cm and PSNR ↑ is in dB, with SplaTAM
is used as a baseline. Best results are in
bold. Both depth and inertial measure-
ments benefit tracking and image quality.
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Figure 3: Qualitative results on UT-MM dataset: RGB and depth renderings of UT-MM scenes. Note that the ground truth (GT) depths are captured with depth
cameras, and thus are imperfect. Our method exhibits geometric details not present in the GT depth, as well as fewer RGB artifacts compared to SplaTAM.

NEXT STEPS
Future work aims to improve MM3DGS by adding

1. Robustness with tightly-coupled inertial fusion and bias estimation

2. Scalability with loop closure

3. Speed with advanced 3DGS techniques, e.g., DUSt3R and In-
stantSplat

CONCLUSION

See our project page!

We presented MM3DGS, a multi-modal SLAM
framework built on a 3D Gaussian map repre-
sentation. We evaluate our framework on a new
multi-modal dataset, UT-MM, that includes
RGB-D images, IMU measurements, LiDAR
depth, and ground truth trajectories. MM3DGS
achieves superior tracking accuracy and ren-
dering quality compared to the state-of-the-art
baseline. MM3DGS can be implemented in
a wide range of applications in robotics, aug-
mented reality, and mobile computing due to its
use of commonly available sensors.


