Fine-Tuning Language Models Using Formal Methods Feedback:

A Use Case In Autonomous Systems
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The Central Question
How can we integrate multimodal pretrained models into the algorithms for
verifiable sequential decision-making?

Problems of Reinforcement Learning from Human Feedbacks...

2) Human feedbacks is often inconsistent
due to their preferences and knowledge.

1) Labor-intensive due to excessive
human-annotated data.
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Motivation

How can we fine-tune a large language model for domain specific tasks,
e.g., autonomous driving, without the need for human experts?

How can we automatically generate unlimited and consistent training
data when fine-tuning the language model?

How can we check whether the language model’s outputs satisfy the
autonomous system’s requirements.

Contributions
1. Use formal methods to provide feedbacks to the language model’'s
outputs, eliminate the need for human labeling.

2. Generate and verify task controllers to ensure consistencies with the
autonomous system’s requirements.

3. Develop a method that provides automated feedbacks either through formal
verification or through empirical data obtained from simulations.

Formal Verification
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Empirical Evaluation via Simulation
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The Overall Pipeline
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Direct Preference Optimization

How do we collect formal methods feedback?
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Automaton Construction

1. Look straight ahead and watch for traffic light.
2. If the traffic light turns green, start moving
forward.

3. As you approach the intersection, look to your
left for oncoming traffic.

4. If there is no traffic coming from your left, check
pedestrians on your right.

5. If it is safe, turn your vehicle right.
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. <observe traffic light>.

. <if> <green traffic light>, <go straight>.

. <observe car from left>.

. <if> <no car from left>, <check pedestrian
at right>.

. <1f> <no pedestrian at right>, <turn

right>.
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Quantitative Results

Training Loss
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How likely the LLM outputs the
preferred response (y,,) rather than the
unpreferred response (y;).
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Number of specifications satisfied during fine-tuning
via formal verification feedback.
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How strongly the LLM favors the
preferred response (y,, ) rather than
the unpreferred response (y;).
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Number of specifications satisfied before and after fine-
tuning through empirical evaluation via simulation.
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